Take for example, the XOR gate. The truth table for the XOR function is defined as:
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgDdria3CJq0KK5QCNS4WMxBzBFzI636s8fbIXQMdu6LBrUhhjWMpgqSJGLwP83PmcI9eLiEncB4f5GIz-BygF9ZogGwK27cMGiLZ7W2GO0Qmh4XhNm91eMOtkWp3YBXqvzvbwYGSW5CEc/s320/xor_tt.gif)
Hence, from the truth table, there are 2 lines (or rows) where output = 1:
when (A=0 and B=1) or when (A=1 and B=0).
Hence, we can write the boolean expression for the output as
Output = (A' . B) + (A . B')
where A' denotes A_bar, or A complement/inverted, and B' denotes B_bar. This form of expression is called Sum-Of-Product (SOP) expression.
The logic circuit for the XOR function is:
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgS68Geu3x-y_P4x72M291K_4Ya-Wlyslavw2BCyD1ikl2kpxRz79yweetxbb7mAZJDxQEW-bVHtLZB7W33iiW24b9o4Q7gABWKc7QJk_W_9huwqdyaiJOCrNRQjoStrq6SdS-HaLbznjs/s320/xor_cir.gif)
Notice we have defined a special symbol for the XOR function.
Given one of the three, you be able to derive the other two. Remember, they are interrelated:
- Truth Table
- Boolean Expression
- Logic Circuit
An interesting website: Logic Gate Flash Animation
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.